

Introduction

The space $M_{0,n}$ of configurations of n distinct points on \mathbb{P}^1 is a ubiquitous object in algebraic geometry. Hassett produces a family $\overline{M}_{0,\omega}$ of compactifications of $M_{0,n}$ by allowing points to collide in varying degrees, based on their "weight" ω .

A graph associahedron $\mathcal{P}G$ is a convex polytope induced by a finite graph *G*. There is a toric variety $X(\mathcal{P}G)$ associated to $\mathcal{P}G$, and an intersting question with combinatorial and geometric implications is for which *G*, $X(\mathcal{P}G)$ is isomorphic to a Hassett space.

A classic example is the Losev–Manin compactification of $M_{0,n}$, which is given by $\omega = (1, 1, \epsilon, \epsilon, ..., \epsilon)$ and is isomorphic to $X(\mathcal{P}K_{n-2})$, the toric variety associated to graph associahedron of the complete graph on n - 2 vertices.

Figure 1: The permutohedron $\mathcal{P}K_4$

We completely classify all Hassett spaces that arise as the toric varieties of graph associahedra.

Graph associahedra and Hassett spaces

Rodrigo Ferreira da Rosa

Graph associahedra

Given a graph *G* on n - 2 vertices, fix a bijection between the vertices of *G* and the facets of the (n - 3)-simplex Δ .

Definition: A *tube t* of *G* is a subset of the vertices of *G* with connected induced subgraph. *t* naturally corresponds to the face of Δ given by the intersection of the facets in bijection to the vertices in *t*.

Construction of $\mathcal{P}G$: Find all tubes of G and truncate the corresponding faces of Δ in increasing order of dimension.

Figure 2: The truncation of the stellahedron

Compactifications of $M_{0,n}$

The coordinates planes of \mathbb{P}^n are in bijection with the faces of the *n*-simplex. Given a graph G, $X(\mathcal{P}G)$ is defined to be the blowup of \mathbb{P}^n (in increasing order of dimension) along the subvarieties corresponding to truncated faces of $\mathcal{P}G$. In order to understand $X(\mathcal{P}G)$ as a compactification of $M_{0,n}$, we use ideas due to Kapranov, and the following classical fact: **Theorem:** There exists a unique rational normal curve through any *n* general points of \mathbb{P}^{n-3} .

Of the set of *n* points, let the toric fixed points of \mathbb{P}^{n-3} be the last n-2 points, NT = [1 : ... : 1] be the second point, and a moving point *m* be the first point.

Whenever *m* is not inside the span of n - 2 other points, there exists a unique rational normal curve through all points, parametrizing a \mathbb{P}^1 with *n* marked points. If *m* collides with the span *V* of $k \le n - 2$ of the other points, we get a nodal degeneration of \mathbb{P}^1 where the *n* marked points either collide or bubble off depending on whether or not *V* was blown up.

Hassett spaces

Hassett defines $\overline{M}_{0,\omega}$ by assigning weights to the *n* marked points. Heuristically, "light points" may collide, while "heavy points" may not.

Definition: Given a weight vector $\omega = (c_m, c_{NT}, c_1, ..., c_{n-2}) \in [0, 1]^n$, $\overline{M}_{0,\omega}$ is the space of all genus zero rational nodal curves, all of whose components are ω -stable. A component Λ is ω -stable if:

of nodes
$$+ \sum_{i \in \Lambda} c_i > 2$$

A Hassett space is a compactification of $M_{0,n}$ of the form $\overline{M}_{0,\omega}$ for some ω .

Results

▲ **Main Theorem:** If $X(\mathcal{P}G) = \overline{M}_{0,\omega}$ for some *ω*, then *G* = Cone^{*n*-2-*k*}($\sqcup_{i=1}^{k} v_i$).

Example: If *G* is a star graph, then $X(\mathcal{P}G) \cong \overline{M}_{0,\omega}$ for $\omega = (1, 1/2, 1/2, \epsilon, \epsilon, ..., \epsilon).$

The proof of the main theorem is based on the following observations.

Proposition: If *G* is a graph, then there exists a weight vector ω such that $\overline{M}_{0,\omega}$ is isomorphic to $X(\mathcal{P}G)$ iff the following inequalities can be satisfied:

1. for every tube t, |t| > 1, $c_{NT} + \sum_{i \in t} c_i > 1$ 2. for every non-tube ν , $c_{NT} + \sum_{i \in \nu} c_i \le 1$.

$$\left(\sum_{i=1}^{n-2} c_i\right) - c_i \leq 1, \forall c_i \neq c_m, c_{NT}$$

Obstruction 1: If $X(\mathcal{P}G)$ is a Hassett space, no non-tube $\nu \subset G$ contains a tube t with |t| > 1.

Obstruction 2: If $X(\mathcal{P}G)$ is a Hassett space, there is no $S \subset V(G)$ s.t. *S* can be partitioned in *k* tubes and *k'* non-tubes with $k \ge k'$.

Corollary (of obstruction 2): If $X(\mathcal{P}\operatorname{Susp}(G))$ is a Hassett space, *G* is the complete graph.