Simplicial Complexes and Effective Divisors of $\overline{M}_{0,n}$

Connor Halleck-Dubé, Jocelyn Wang, and Nicholas Wawrykow

Yale University

August 4, 2016
$\overline{M}_{0,n}$: Our Ambient Space
$\overline{M}_{0,n}$: Our Ambient Space

$M_{0,n} :$ The moduli space parameterizing configurations of n distinct points on \mathbb{CP}^1 under the action of $PGL_2(\mathbb{C})$.
\(\overline{M}_{0,n} : \) Our Ambient Space

\(M_{0,n} : \) The moduli space parameterizing configurations of \(n \) distinct points on \(\mathbb{CP}^1 \) under the action of \(PGL_2(\mathbb{C}) \).

\(\overline{M}_{0,n} : \) A space parameterizing these configurations and their limits.
Definition

A divisor D is a formal linear sum of codimension-1 subvarieties D_i:

$$D = \bigoplus_{i} a_i D_i , \quad a_i \in \mathbb{Z}.$$
A **divisor** D is a formal linear sum of codimension-1 subvarieties D_i:

$$D = \bigoplus_i a_i D_i, \quad a_i \in \mathbb{Z}.$$

A divisor $D = \bigoplus_i a_i D_i$ is **effective** if $a_i \geq 0$ for all a_i.

Definition

A divisor D is a formal linear sum of codimension-1 subvarieties D_i:

$$D = \bigoplus_i a_i D_i, \quad a_i \in \mathbb{Z}.$$

Definition

A divisor $D = \bigoplus_i a_i D_i$ is effective if $a_i \geq 0$ for all a_i.
Definition

A divisor D is a formal linear sum of codimension-1 subvarieties D_i:

$$D = \bigoplus_i a_i D_i, \quad a_i \in \mathbb{Z}.$$

Definition

A divisor $D = \bigoplus_i a_i D_i$ is effective if $a_i \geq 0$ for all a_i.

- The set of divisors is a non-finitely generated abelian group.
Divisors

Definition

A divisor D is a formal linear sum of codimension-1 subvarieties D_i:

$$D = \bigoplus_i a_i D_i, \quad a_i \in \mathbb{Z}.$$

Definition

A divisor $D = \bigoplus_i a_i D_i$ is effective if $a_i \geq 0$ for all a_i.

- The set of divisors is a non-finitely generated abelian group.
- The set of effective divisors is a non-finitely generated monoid contained in this group.
There exists an equivalence relation between divisors on $\overline{M}_{0,n}$, determined by intersection of divisors with curves.
Divisors on $\overline{M}_{0,7}$

- There exists an equivalence relation between divisors on $\overline{M}_{0,n}$, determined by intersection of divisors with curves.

- Under this equivalence relation the group of divisors on $\overline{M}_{0,7}$ is isomorphic to \mathbb{Z}^{42}, with basis H, E_i, E_{ij}, E_{ijk} where $i, j, k \in \{1, \ldots, 6\}$ are distinct.
There exists an equivalence relation between divisors on \(\overline{M}_{0,n} \), determined by intersection of divisors with curves.

Under this equivalence relation the group of divisors on \(\overline{M}_{0,7} \) is isomorphic to \(\mathbb{Z}^{42} \), with basis \(H, E_i, E_{ij}, E_{ijk} \) where \(i, j, k \in \{1, \ldots, 6\} \) are distinct.

Under this equivalence relation there exist divisors with negative coefficients that are equivalent to effective divisors.
There exists an equivalence relation between divisors on $\overline{M}_{0,n}$, determined by intersection of divisors with curves.

Under this equivalence relation the group of divisors on $\overline{M}_{0,7}$ is isomorphic to \mathbb{Z}^{42}, with basis H, E_i, E_{ij}, E_{ijk} where $i, j, k \in \{1, \ldots, 6\}$ are distinct.

Under this equivalence relation there exist divisors with negative coefficients that are equivalent to effective divisors.

This makes the problem of determining which divisors are equivalent to effective divisors challenging.
Understand effective divisors on $\overline{M}_{0,n}$:
Project Goal

Understand effective divisors on $\overline{M}_{0,n}$:

1. Classify effective divisors (necessary and sufficient conditions)
Understand effective divisors on $\overline{M}_{0,n}$:

1. Classify effective divisors (necessary and sufficient conditions)

2. Find minimal generators for the monoid of effective divisors on $\overline{M}_{0,7}$
A \textit{d-simplex} \(\sigma \) on a set \(A \) is a multiset of elements in \(A \) with cardinality \(d + 1 \).
Definition

A *d-simplex* σ on a set A is a multiset of elements in A with cardinality $d + 1$.

Example: Let $A = \{1, 2, 3, 4\}$. Then $\{1, 2\}$ and $\{1, 1\}$ are 1-simplices and $\{1, 2, 4\}$ and $\{1, 3, 3\}$ are 2-simplices.
Definition

A d-simplex σ on a set A is a multiset of elements in A with cardinality $d + 1$.

Example: Let $A = \{1, 2, 3, 4\}$. Then $\{1, 2\}$ and $\{1, 1\}$ are 1-simplices and $\{1, 2, 4\}$ and $\{1, 3, 3\}$ are 2-simplices.
Simplicial Complexes

Definition

A \textit{d-simplex} σ on a set A is a multiset of elements in A with cardinality $d + 1$.

\textbf{Example}: Let $A = \{1, 2, 3, 4\}$. Then $\{1, 2\}$ and $\{1, 1\}$ are 1-simplices and $\{1, 2, 4\}$ and $\{1, 3, 3\}$ are 2-simplices.
Definition

A \textit{d-simplex} σ on a set A is a multiset of elements in A with cardinality $d + 1$.

Example: Let $A = \{1, 2, 3, 4\}$. Then $\{1, 2\}$ and $\{1, 1\}$ are 1-simplices and $\{1, 2, 4\}$ and $\{1, 3, 3\}$ are 2-simplices.
Definition

A \emph{d-simplex} \(\sigma \) on a set \(A \) is a multiset of elements in \(A \) with cardinality \(d + 1 \).

Definition

A \emph{d-complex} \(\Delta \) on a set \(A \) is a set of \(d \)-simplices \(\sigma_i \) on \(A \):
\[
\Delta := \{ \sigma_1, \ldots, \sigma_r \}.
\]
Definition

A *d-simplex* \(\sigma \) on a set \(A \) is a multiset of elements in \(A \) with cardinality \(d + 1 \).

Definition

A *d-complex* \(\Delta \) on a set \(A \) is a set of *d*-simplices \(\sigma_i \) on \(A \):

\[
\Delta := \{ \sigma_1, \ldots, \sigma_r \}.
\]

Example: \(\Delta = \{ \{1, 1\}, \{1, 2\}, \{1, 3\}, \{2, 3\} \} \) is a 1-complex.
Weighting

Definition

A \textit{d-complex} Δ on a set A is a set of d-simplices σ_i on A:

\[\Delta := \{\sigma_1, \ldots, \sigma_r\}. \]

Definition

A \textit{weighting} on a \textit{d-complex} $\Delta = \{\sigma_1, \ldots, \sigma_r\}$ is an assignment of an integer w_i to each simplex σ_i.
A \(\text{d-complex} \ \Delta \) on a set \(A \) is a set of \(\text{d-simplices} \ \sigma_i \) on \(A \):

\[
\Delta := \{\sigma_1, \ldots, \sigma_r\}.
\]

A \textit{weighting} on a \(d \)-complex \(\Delta = \{\sigma_1, \ldots, \sigma_r\} \) is an assignment of an integer \(w_i \) to each simplex \(\sigma_i \).

\textbf{Example:} \(\Delta = \{\{1,1\} : 1, \{1,2\} : 3, \{1,3\} : -2, \{2,3\} : -1\} \).
Balancing

Definition

A weighting on a d-complex Δ is *balanced* if, for each multiset S of cardinality d such that each element of S is in A,

$$
\sum_{\sigma_i \supseteq S} w_i \cdot \text{mult}(S \subseteq \sigma_i) = 0.
$$

A d-complex Δ is *balanceable* if there exists a balanced weighting on Δ.
A weighting on a d-complex Δ is balanced if, for each multiset S of cardinality d such that each element of S is in A,

$$
\sum_{\sigma_i \supseteq S} w_i \cdot \text{mult}(S \subseteq \sigma_i) = 0.
$$

A d-complex Δ is balanceable if there exists a balanced weighting on Δ.

Example: $\Delta = \{\{1, 1\} : 1, \{1, 2\} : -1, \{1, 3\} : -1, \{2, 3\} : 1\}$.

![Diagram of a 1-complex with weights 1, -1, -1, 1 at vertices 1, 2, 3, respectively.]
Definition

A weighting on a d-complex Δ is balanced if, for each multiset S of cardinality d such that each element of S is in A, \[
\sum_{\sigma_i \supseteq S} w_i \cdot \text{mult}(S \subseteq \sigma_i) = 0.
\]

Definition

A balanced weighting is called proper if $w_i \neq 0$ for all i.

Halleck-Dubé, Wang, and Wawrykow Complexes and Effective Divisors July 29, 2016 10 / 20
Special Balancings

Definition
A weighting on a d-complex Δ is balanced if, for each multiset S of cardinality d such that each element of S is in A,

$$\sum_{\sigma_i \supseteq S} w_i \cdot \text{mult}(S \subseteq \sigma_i) = 0.$$

Definition
A balanced weighting is called proper if $w_i \neq 0$ for all i.

Definition
A d-complex is simply balanceable if there exists a unique properly balanced weighting up to scaling.
Definition

A d-complex is \textit{simply balanceable} if there exists a unique properly balanced weighting up to scaling.

Example: $\Delta = \{\{1, 1\} : 1, \{1, 2\} : -1, \{1, 3\} : -1, \{2, 3\} : 1\}$.
Definition

A d-complex is *simply balanceable* if there exists a unique properly balanced weighting up to scaling.

Example: $\Delta = \{\{1, 1\} : 1, \{1, 2\} : -1, \{1, 3\} : -1, \{2, 3\} : 1\}$.

![Diagram of a complex with weights 1 and -1 on edges]
Every d-complex Δ on $n - 1$ vertices corresponds to a divisor class D_Δ in $\overline{M}_{0,n}$ defined as follows:

$$D_\Delta := (d + 1)H - \sum_{l} \left(d + 1 - \max_{\sigma \in \Delta} \left\{ \sum_{i \in l} \text{mult}_i(\sigma) \right\} \right) E_l$$

where $1 \leq |l| \leq n - 4$ and $l \subset \{1, \ldots, n - 1\}$.
Every d-complex Δ on $n - 1$ vertices corresponds to a divisor class D_Δ in $\overline{M}_{0,n}$ defined as follows:

$$D_\Delta := (d + 1)H - \sum_{l} \left(d + 1 - \max_{\sigma \in \Delta} \left\{ \sum_{i \in l} \text{mult}_i(\sigma) \right\} \right) E_l$$

where $1 \leq |l| \leq n - 4$ and $l \subset \{1, \ldots, n - 1\}$.

Theorem

If a complex Δ is properly balanceable, then D_Δ is effective.
Every d-complex Δ on $n - 1$ vertices corresponds to a divisor class D_Δ in $\overline{M}_{0,n}$ defined as follows:

$$D_\Delta := (d + 1)H - \sum_{I \subseteq \{1, \ldots, n - 1\}} \left(d + 1 - \max_{\sigma \in \Delta} \left\{ \sum_{i \in I} \text{mult}_i(\sigma) \right\} \right) E_I$$

where $1 \leq |I| \leq n - 4$ and $I \subseteq \{1, \ldots, n - 1\}$.

Theorem

If a complex Δ is properly balanceable, then D_Δ is effective.

Theorem

*If D is effective, and $D - \sum E_I$ is not effective for any $\sum E_I$, then there exists a properly balanceable complex Δ such that $D_\Delta = D$.***
Known Families of Minimal Effective Divisors on $\overline{M}_{0,7}$

- Exceptional Divisors: $E_i, E_{ij}, E_{ijk}, i, j, k \in \{1, \ldots, 6\}$
- Exceptional Divisors: E_i, E_{ij}, E_{ijk}, $i, j, k \in \{1, \ldots, 6\}$
- Non-exceptional ("Horizontal") Divisors:
Known Families of Minimal Effective Divisors on $\overline{M}_{0,7}$

- Exceptional Divisors: $E_i, E_{ij}, E_{ijk}, i, j, k \in \{1, \ldots, 6\}$
- Non-exceptional ("Horizontal") Divisors:

$$M_1 = \circ \circ, \quad M_2 = \bigcirc \bigcirc \bigcirc, \quad M_3 =$$
(Boundary) (Keel-Vermeire) (Opie)

$$M_4 = \bigcirc \bigcirc \bigcirc, \quad M_5 =$$
(DGJ) (Castravet-Tevelev)
Our Results

Definition

A complex Δ is said to be complete when $D_{\Delta \cup \{\sigma\}} = D_\Delta$ only if $\sigma \in \Delta$.
Our Results

Definition

A complex Δ is said to be complete when $D_{\Delta \cup \{\sigma\}} = D_\Delta$ only if $\sigma \in \Delta$.

- There is a unique complete complex affiliated with any divisor D, denoted by $\Delta(D)$.
Our Results

Definition
A complex Δ is said to be complete when $D_{\Delta \cup \{\sigma\}} = D_{\Delta}$ only if $\sigma \in \Delta$.

- There is a unique complete complex affiliated with any divisor D, denoted by $\Delta(D)$.

Theorem (Effective Divisor Criterion)
A divisor D is effective if and only if $\Delta(D)$ is balanceable.
Vertex Identification
Let $\phi_{ij} : \Delta_n \to \Delta_{n-1}$ be the map that sends complexes on n indices to complexes on $n - 1$ by replacing the j-th index with i.
Vertex Identification

Definition

Let $\phi_{ij} : \Delta_n \rightarrow \Delta_{n-1}$ be the map that sends complexes on n indices to complexes on $n - 1$ by replacing the j-th index with i.

Example:

$$\phi_{14} (\{\{1, 2\}, \{1, 4\}, \{2, 3\}, \{3, 4\}\}) = \{\{1, 1\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}$$
Vertex Identification

Definition

Let \(\phi_{ij} : \Delta_n \rightarrow \Delta_{n-1} \) be the map that sends complexes on \(n \) indices to complexes on \(n - 1 \) by replacing the \(j \)-th index with \(i \).

Example:

\[
\phi_{14}(\{\{1, 2\}, \{1, 4\}, \{2, 3\}, \{3, 4\}\}) = \{\{1, 1\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}
\]
Remark

There exists a canonical reverse Ψ of a series of vertex identifications that generates a complex with no degeneracy.
Remark

There exists a canonical reverse Ψ of a series of vertex identifications that generates a complex with no degeneracy.

Example:

$$\Psi(\{\{1, 1\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}) = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\}$$
There exists a canonical reverse Ψ of a series of vertex identifications that generates a complex with no degeneracy.

Example:
\[
\Psi(\{\{1, 1\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}) = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\}
\]
A Pattern

\[M_1 = \circ \circ , \quad M_2 = , \quad M_3 = \]
A Pattern

\[
M_1 = \circ \circ \circ \circ \circ,
M_2 = \circ \circ \circ \circ \circ,
M_3 = \circ \circ \circ \circ \circ
\]

Note that \(\Psi(M_3) \) gives the complex:
A Pattern

\[M_1 = \circ \circ , \quad M_2 = , \quad M_3 = \frac{1}{2} \frac{2}{3} \frac{4}{5} \frac{6}{} \]

Note that \(\Psi(M_3) \) gives the complex:

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
4 & 5 & 6 & 1 \\
2 & 3 & 1 & 5 \\
6 & 1 & 3 & 2
\end{array}
\]
Note that $\Psi(M_3)$ gives the complex:

Question: Is there another way of identifying vertices on this complex to get a complex corresponding to a minimal effective divisor?
A New Minimal Effective Divisor on $\overline{M}_{0,7}$

With corresponding divisor:

$$3H - E_1 - E_2 - 2E_3 - 2E_4 - 2E_5 - 2E_6 - E_{14} - E_{15} - E_{16} - E_{24} - E_{25} - 2E_{34} - 2E_{35} - 2E_{36} - E_{45} - E_{46} - E_{56} - E_{345} - E_{346} - E_{356}$$
A New Minimal Effective Divisor on $\overline{M}_{0,7}$

With corresponding divisor:

$$3H - E_1 - E_2 - 2E_3 - 2E_4 - 2E_5 - 2E_6 - E_{14} - E_{15} - E_{16} - E_{24} - E_{25} - 2E_{34} - 2E_{35} - 2E_{36} - E_{45} - E_{46} - E_{56} - E_{345} - E_{346} - E_{356}$$

Δ is complete, and D_Δ cannot be written as $\sum_i a_i M_i$
A New Minimal Effective Divisor on $\overline{M}_{0,7}$

With corresponding divisor:

$$3H - E_1 - E_2 - 2E_3 - 2E_4 - 2E_5 - 2E_6 - E_{14} - E_{15} - E_{16} - E_{24}$$

$$-E_{25} - 2E_{34} - 2E_{35} - 2E_{36} - E_{45} - E_{46} - E_{56} - E_{345} - E_{346} - E_{356}$$

Δ is complete, and D_{Δ} cannot be written as $\sum_i a_i M_i$.

Theorem (Strict Effectiveness)

If Δ is a simply balanceable and complete complex, then D_{Δ} breaks as a strict sum of non-exceptional minimal effective divisors.
With corresponding divisor:
\[3H - E_1 - E_2 - 2E_3 - 2E_4 - 2E_5 - 2E_6 - E_{14} - E_{15} - E_{16} - E_{24} \]
\[- E_{25} - 2E_{34} - 2E_{35} - 2E_{36} - E_{45} - E_{46} - E_{56} - E_{345} - E_{346} - E_{356} \]

\(\Delta \) is complete, and \(D_\Delta \) cannot be written as \(\sum_i a_i M_i \)

Theorem (Strict Effectiveness)

If \(\Delta \) is a simply balanceable and complete complex, then \(D_\Delta \) breaks as a strict sum of non-exceptional minimal effective divisors.

Corollary

\(D_\Delta \) is a minimal effective divisor.
Thank You!

\[M_6 = \]
We’d like to thank the MAA for hosting MathFest! Additionally, we’d like to thank José González for advising us, as well as Michael Magee and Sam Payne for organizing SUMRY.

Thanks for listening!
Castravet, Ana-Maria and Jenia Tevelev (2010). “Hypertrees, projections, and moduli of stable rational curves”.

Doran, Brent, Noah Giansiracusa, and David Jensen (2014). “A Simplicial Approach to Effective Divisors in $\overline{M}_{0,n}$”.

González, José Luis et al. “Some Minimal Effective Divisors on $\overline{M}_{0,n}$”.

Opie, Morgan (2013). “Extremal divisors on moduli spaces of rational curves with marked points”.

Halleck-Dubé, Wang, and Wawrykow Complexes and Effective Divisors July 28, 2016 20 / 20