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Introduction

In all-pay auctions, only one bidder wins but all bid-
ders must pay the auctioneer. All-pay bidding games
arise from attaching a similar bidding structure to
traditional combinatorial games to determine which
player moves next. In contrast to the established
theory of single-pay bidding games, optimal play in-
volves bidding from a probability distribution.
Our work has focused on better understanding the
structure of these optimal mixed strategies. This
poster defines “grounded” and “gap-free” optimal
strategies and explains a surprising relationship be-
tween opponents’ strategies through a “reverse” op-
eration. Through these results we can implement
an algorithm that computes optimal strategies for
bidding games.

Definitions

Definition. A payoff vA for player A in Ga,b

is equal to the probability that player A wins the
game under optimal play. A payoff matrix MA

for player A is given by (MA)i,j = vA(G′a−i+j,b−j+i)
where G′ is the game position after the next move.
We let MA(k) denote the k × k principal minor of
the payoff matrix.
Definition. A strategy SA(Ga,b) for player A is
given by an (a + 1)-dimensional probability vector
where SA(i) gives the probability that player A will
bid i chips. A strategy S is gap-free if Si, Sj 6=
0 ⇐⇒ Sk 6= 0 ∀i ≤ k ≤ j. A strategy S is
grounded if S0 6= 0. A strategy S has length
l = l(S) ⇐⇒ Sl−1 6= 0 and Sm = 0 ∀m ≥ l.
Definition. G is called precise if in every succes-
sor state to G, it is strictly better to have one more
chip.
Definition. A game is in Nash equilibrium if
both players play strategies such that neither player
can further improve his or her payoff.
Definition A strategy is called a Nash equilib-
rium strategy if it guarantees a player the payoff
he would recive in a Nash equilibrium. Von Neu-
mann and Morganstern proved that in two-player
zero-sum games a player’s Nash equilibrium strate-
gies are interchangeable [1].

Our Results

Lemma 1. For a Nash equilibrium with
opposing strategies SA and SB if (SA)i 6= 0 then
(MBSB)i = vB.
Assume, without loss of generality, that player A
has the tie-breaking advantage at a given turn. Let
the game in question, Ga,b, be precise.
Lemma 2. Player A has a gap-free and
grounded optimal strategy. Player B has a
gap-free optimal strategy.
Definition. The reverse of a length l strategy S
is given by R(S) = R((s0, s2, . . . , sl−1, 0, . . . , 0)) =
(sl−1, sl−2, . . . , s0, 0, . . . , 0). where the number of
trailing is zeroes will be clear from context.

Reverse Theorem

Let S be a Nash equilibrium strategy for player
A. Then R(S) is a Nash equilibrium strategy for
his opponent.

Corollary. Player A and player B have
optimal strategies of the same length.
Lemma 3. Let the length of A’s Nash
equilibrium strategy of maximum length be l.
Then there exists a valid strategy for player A
that produces the same payoff against player
B’s first k pure strategies if and only if k ≤ l.

Our Algorithm

By Lemmas 1 and 2, if SA has length l, we have
MA(l) · SA = va · 1l. Thus, if we know what l is, we
can compute SA by evaluating MA(l)−1 · 1l and
normalizing the result into a probability vector.
Thus, the main problem is to find the length of the
equilibrium strategy. Using Lemma 3 above, we
can employ a binary search to find the length of a
player’s strategy in O(log(n) · n2) time, where n is
the player’s chip count.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .90 .80 .67 .50 .50 0 0 0 0 0
.20 1 .90 .80 .67 .50 .50 0 0 0 0
.33 .20 1 .90 .80 .67 .50 .50 0 0 0
.50 .33 .20 1 .90 .80 .67 .50 .50 0 0
.50 .50 .33 .20 1 .90 .80 .67 .50 .50 0
1 .50 .50 .33 .20 1 .90 .80 .67 .50 .50
1 1 .50 .50 .33 .20 1 .90 .80 .67 .50
1 1 1 .50 .50 .33 .20 1 .90 .80 .67
1 1 1 1 .50 .50 .33 .20 1 .90 .80
1 1 1 1 1 .50 .50 .33 .20 1 .90
1 1 1 1 1 1 .50 .50 .33 .20 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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In the payoff matrix above where the player has 10
chips, the algorithm would check k = 6, then
k = 9, then k = 7, and finally k = 8 before settling
on the correct length of 7.

A Sample Bidding Game

Consider the following “Best of Three” game in
which the first player to make two moves wins. Each
player begins with 100 chips.

Table 1: A Game of Best of Three
Turn A B A’s bid B’s bid Score
1 100 100 20 50 0-1
2 130 70 45 30 1-1
3 115 85 115 85 2-1

Note that updating each player’s chip count only
depends on the difference between their bids, not
the bid values themselves. In the event of tied bids,
the player with more chips gets to move. One player
is arbitrarily designated to win ties when chip counts
are equal.

Formalizing Bidding Games

We represent games as directed graphs, where ver-
tices are game states and edges are possible moves.
The below graph represents the “Best of Three”
game from the example above.

A
B

A and B correspond to victories for players A and
B, respectively. We can use recursion starting at A
and B and moving opposite the arrows to compute
optimal strategies at any vertex of the graph. We
simply fill the payoff matrix for a vertex by comput-
ing the possible payoffs at all of that vertices suces-
sors. Then we use our algorithm to derive an optimal
strategy from that matrix.
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