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1 Ramanujan Graphs

Let G be a d-regular graph. Every d-regular graph has d as an eigenvalue
(with multiplicity equal to the number of connected components), and all
other eigenvalues have magnitude less that or equal to d (−d is an eigenvalue
if and only if G is bipartite). Eigenvalues of magnitude d are called trivial
eigenvalues. Let λ(G) be defined in the following way:

λ(G) = max
|λi|<d

| λi |

Thus λ(G) is the greatest magnitude of the non-trivial eigenvalues of a
regular graph. A graph is called a Ramanujan graph if λ(G) ≤ 2

√
d− 1.

Ramanujan graphs represent an extremal class of graphs as made evident by
the following theorem by Alon and Boppana [1]:

Theorem 1.1. For every integer d ≥ 3 and every ε > 0, there exists an n0

so that every d-regular graph G with more than n0 vertices has a non-trivial
eigenvalue that is greater than 2

√
d− 1− ε.

2 Signings and 2-Lifts

A signing of a graph is a function s : E(G) 7→ {−1, 1}. Signings prescribe a
way of performing 2-lifts of graphs in the following way: create two copies
of the vertex set of G, V1(G) and V2(G). For each e = a ∼ b ∈ E(G), if e is
positively signed, then create edges a1 ∼ b1 and a2 ∼ b2, and if e is negatively
signed, then create edges a1 ∼ b2 and a2 ∼ b1. Denote the resulting graph as
Gs.
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Let A+
s (A−s ) denote the (adjacency matrix of the) subgraph of G contain-

ing only the positively (negatively) signed edges. Notice that A+
s +A−s = A.

Let As = A+
s − A−s . We call As the signed adjacency matrix.

Proposition 2.1 ([2]). Spec(Gs) = Spec(G) ∪ Spec(As)

Notice then that if we start with a d-regular graph G that is Ramanujan,
and we are able to find a signing s such that ρ(As) ≤ 2

√
d− 1 (ρ here is

the spectral radius), then the resulting graph will also be Ramanujan. If we
are able to repeat this process at each step, then we would obtain an infinite
family of Ramanujan graphs.

3 Paley Graphs

Definition 3.1. Let n = pk ≡ 1 mod 4 with p prime. The Paley graph on
n vertices (Pn) is defined in the following way: let Fn be the finite field on n
elements. Then, V (Pn) = Fn, and E(Pn) = {(a, b) ∈ Fn×Fn : a−b ∈ (F×n )2}.

Definition 3.2. Let H be a graph on n vertices. The complement of H,
denoted H or Kn\H, has V = V (H) and E = {(a, b) ∈ V × V : (a, b) /∈
E(H)}.

Paley graphs exhibit a number of nice properties:

Proposition 3.3. Let n = pk ≡ 1 mod 4. Then

1. Spec(Pn) = {1
2
(n − 1) : 1, 1

2
(−1 +

√
n) : 1

2
(n − 1), 1

2
(−1 −

√
n) : 1

2
(n −

1)} with ~1 as the eigenvector corresponding to the eigenvalue 1
2
(n− 1)

(strong regularity).

2. Pn ∼= Pn (self-complementarity).

Paley graphs give us a way of partitioning the complete graph on n ver-
tices (Kn) into two isomorphic pieces.

Proposition 3.4. Let n = pk ≡ 1 mod 4, and G = Kn. Let A+
s = Pn for

some Pn ⊂ Kn and A−s = Pn. Then Spec(As) = {0 : 1,
√
n : 1

2
(n− 1),−

√
n :

1
2
(n− 1)}.

Proof. Recall that Spec(Kn) = {n − 1 : 1,−1 : n − 1} and that ~1 is the
eigenvector associated with the eigenvalue n − 1. Notice that we can write
As = 2A+

s −Kn. Since ~1 is an eigenvector of both A+
s and Kn, we know it is

also an eigenvector of As with corresponding eigenvalue 2 ∗ 1
2
(n− 1)− (n−
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1) = 0. By the spectral theorem, we know that all other eigenvectors of A+
s

are orthogonal to ~1, as are all other eigenvectors of Kn, all of which have
eigenvalues of -1. Thus, all eigenvectors of A+

s are eigenvectors of As. Each
eigenvalue of A+

s of value 1
2
(−1 +

√
n) becomes an eigenvalue of As of value

2 ∗ 1
2
(−1 +

√
n) + 1 =

√
n (and similarly the eigenvalues 1

2
(−1−

√
n) become

−
√
n).

Since
√
n ≤ 2

√
d− 1 = 2

√
n− 2 for all n ≥ 3, 2-lifts of Kn performed

in this way are Ramanujan. However, this only works when there is a Pa-
ley graph on n vertices. We claim that it is in fact possible to perform a
Ramanujan 2-lift for all complete graphs.

Theorem 3.5. ∀ 5 ≤ ` ∈ N, ∃ n = pk ≡ 1 mod 4 ≥ ` such that every
signing s derived from a vertex set σ ⊆ V (Kn) of size ` with A+

s = (Pn)σ and
A−s = (Pn)σ yields a Ramanujan 2-lift.

Here (Pn)σ refers to the vertex-induced subgraph of Pn on the vertices in
σ. In order to prove this theorem, we first need the following two lemmas:

Lemma 3.6 ([4]). (Cauchy’s interlacing theorem) If A is a Hermitian ma-
trix, and B is a principal submatrix of A, then the eigenvalues of B interlace
the eigenvalues of A.

What’s particularly notebale about this theorem in this case is that when
we have both positive and negative eigenvalues, ρ(B) ≤ ρ(A) for all principal
submatrices B of A.

Lemma 3.7 ([9]). ∀ 6 ≤ ` ∈ N, ∃ at least two primes between ` and 2`.

Proof. (Theorem 3.5) Let n = pk ≡ 1 mod 4. Then by Proposition 3.4,
we can partition Kn into two isomorphic pieces and perform a 2-lift via the
signing s with A+

s (Kn) = Pn and A−s (Kn) = Pn. If we choose a subset σ of `
of the vertices of Kn, then we can derive a signing s∗ for K` with A+

s∗(K`) =
(Pn)σ and A−s∗(K`) = (Pn)σ. Notice then that As∗ is a principal submatrix
of As, so ρ(As∗) ≤ ρ(As) =

√
n by Lemma 3.6. Thus, if

√
n ≤ 2

√
`− 2, then

s∗ necessarily yields a Ramanujan 2-lift of K`. If we are given `, and we are
able to find an n ≥ ` for which a Paley graph on n vertices exists such that√
n ≤ 2

√
`− 2 (or equivalently ` ≤ n ≤ 4n−8), then following the procedure

just described will produce a Ramanujan 2-lift of K`.
In order to apply Lemma 3.7 in the following proof, we need d

√
`e ≥ 6,

which implies ` ≥ 26. It can be easily checked by hand that for all 5 ≤ ` ≤ 25,
there is an n sufficiently close by for the prescribed procedure to produce a
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Ramanujan 2-lift. Now assume that ` ≥ 26. Notice that for all primes
p 6= 2, p2 ≡ 1 mod 4, so it would be sufficient to find n = p2 such that
` ≤ p2 ≤ 4n − 8, or equivalently

√
` ≤ p ≤ 2

√
`− 2. By Lemma 3.7, there

exist at least two primes between d
√
`e and 2d

√
`e. Since 2d

√
`e is even, it is

not prime, so the largest the largest prime in this range can be is 2d
√
`e − 1

and the largest the second largest prime in this range can be is 2d
√
`e − 3.

We get the following inequality:

√
` ≤ d

√
`e ≤ p ≤ 2d

√
`e − 3 < 2

√
`+ 2− 3 = 2

√
`− 1 ≤ 2

√
`− 2

Thus there is necessarily an n = p2 sufficiently close by for all ` ≥ 26.

4 Matchings

Definition 4.1. A k-matching in a graph is a collection of k edges such that
no two edges in the set share a vertex. We denote the number of k-matchings
in a graph by mk.

Definition 4.2. The matching polynomial of a graph G is:

µG(x) :=
∑
k≥0

(−1)kmkx
n−2k

Notice that this is always an even or odd function, so the zeros of µG(x) are
symmetrically distributed. The matching polynomial is a very well-studied
object and has a number of nice properties:

Theorem 4.3 ([6]). Let G be a graph. Then,

1. µG(x) is real-rooted.

2. The roots of µG(s) all lie in the range [−2
√

∆(G)− 1, 2
√

∆(G)− 1],
where ∆(G) is the max degree of all of the vertices in G.

Notice that in the case where G is a d-regular graph, all of the roots have
magnitude less than or equal to 2

√
d− 1, which is exactly the Ramanujan

bound. Indeed, there is a strong connection between the matching polyno-
mial and signings of a graph:

Theorem 4.4 ([5]). Let G be a graph and let S be the set of all possible
signings s on G. Then,

E det(xI − As(G)) = µG(x)
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Since the proof will be relevant to a later result, it shall be included (from
[3]).

Proof. Let G be a a graph on n vertices, and let G′ be the graph obtained by
adding loops to each vertex in G. A cycle v1, v2, ..., vk = v1 is simple if v1 6= vj
for all 1 ≤ i < j ≤ k − 1. A disjoint cycle cover of G′ is a vertex disjoint
collection C = {C1, ..., C`} of simple cycles (loops and two cycles (single
edges) are allowed) in G′ such that their union is V . Define the weight of a
cycle C = v1, ...vk to be

w(C) =

{
x if C is a loop
(−1)ks(v1, v2)s(v2, v3)...s(vk−1, vk) otherwise

The weight of a disjoint cycle cover C = {C1, ..., C`} is w(C) = w(C1)...w(C`).
If we extend s so that s(i, j) = 0 whenever {i, j} /∈ E, then

det(xI − As(G)) =
∑
π∈Sn

sign(π)x# of fixed points
∏

i not fixed

s(i, π(i))

=
∑
C

w(C)

Note that if C is a cycle of length greater than 2, then Ew(C) = 0 because
{s(e)} are independent and each s(e) has expectation 0. If C is a cycle of
length 2, then w(C) = −1. Hence

E
∑
C

w(C) =
∑

C={C1,...,C`}

Ew(C1)...E(C`) =
∑
C′
w(C ′),

where the latter sum is over all disjoint cycle covers into loops and two-cycles.
Clearly such cycle covers are in bijection with matchings.

This is to say that the expected characteristic polynomial of all signings
of a graph is equal to the matching polynomial of the graph. However,
though we know that the roots of the expected characteristic polynomial
of all signings of the graph, we are not necessarily able to say anything
about the roots of the characteristic polynomial of any one signing of the
graph. However, Marcus, Spielman, and Srivastava [8] showed that the set
of characteristic polynomials of signings of the graph form what they call an
interlacing family which allowed them to prove the following theorem:
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Theorem 4.5. (Comparison with Expected Polynomial) Suppose r1, ..., rm ∈
Cn are independent random vectors. Then, for every k,

λk(
m∑
i=1

rir
∗
i ) ≤ λk(Eχ[

m∑
i=1

rir
∗
i ](x)),

with positive probability, and the same is true with ≥ instead of ≤.

We can rephrase signings in terms of independent random vectors, in
which case we can apply the theorem and conclude that for a d-regular graph
G, there is some signing s such that λmax(As) ≤ 2

√
d− 1 and there is some

other signing t such that λmin(As) ≥ −2
√
d− 1. However, we are not able

to say that there exists some signing that meets both of these conditions at
the same time.

Nonetheless, we can use Theorem 4.5 in the case where G is a bipartite
graph. Bipartite graphs always have symmetrically distributed eigenvalues
(that is to say λ ∈ Spec(G) ⇐⇒ −λ ∈ Spec(G)). Therefore, in a d-regular
bipartite graph, any signing s such that λmax(As) ≤ 2

√
d− 1 necessarily also

has λmin(As) ≥ −2
√
d− 1, so by theorem 4.5, we know that if we start with

a bipartite Ramanujan graph (for example, the complete bipartite graph),
then at each step there exists a signing s with ρ(As) ≤ 2

√
d− 1 allowing us

to create an infinite family of bipartite Ramanujan graphs.
A natural question is to ask how matchings arise in the 2-lift of a graph.

Theorem 4.6. Let s be some signing. Let HG be the set of all subgraphs H of
G such that every vertex has degree ≤ 2 with all even length cycles of H con-
taining an even number of edges in A−s and all odd-length cycles containing
an odd number of edges in A−s . Let c(H) be the number of components of H,
`(H) be the number of components just consisting of single edges, and t(H)
be the total number of edges. Let HG

k = {H ∈ HG : t(H) ≤ k ≤ t(H)+`(H)}.
Then,

mk(Gs) =
∑
H∈HG

k

2c(H)+t(H)−k
(

`(H)

k − t(H)

)

Proof. Let M be some matching in Gs, and let M−1
s be the edge-induced

subgraph of G corresponding to the preimage of M in G. Notice that all
vertices in M−1

s must have valency ≤ 2, that is, M−1
s must be composed of

paths and cycles. Further, notice that if two edges in M arise from the same
edge e in G, then e must be its own component in M−1

s . All other edges map
back to just one edge in G.

Let H be a subgraph of G such that the degree of each vertex is ≤ 2. If
we have a path P ∈ H of length k, then the image of P in Gs will be two
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separate paths of length k. By taking every other edge in each of these paths
and one edge from each pair of corresponding edges, we get two different k
matchings just from P . If we have a cycle C ∈ H of length k with an odd
number of edges in A−s , then C maps to a cycle of length 2k in Gs. If k is
odd, then by taking every other edge of this cycle (there are two possible
ways to do this), we obtain a k matching in Gs. If k is even, then taking
every other edge in the image of C will consist of k

2
pairs of corresponding

edges whose preimage will be every other edge in C; thus in this case, C
cannot be in the preimage of any matching.

Now we consider the case where C has an even number of edges in A−s . In
this case, C maps to two k cycles in Gs. If k is odd, there is no way to choose
k edges in the image of C such that one edge from each pair of corresponding
edges is chosen, so C cannot be in the preimage of any matching in Gs. On
the other hand, if k is even, then there are two ways we can choose one edge
from each pair of corresponding edges to get a k matching in Gs. Thus all
preimages of matchings in Gs consist of subgraph of G such that each vertex
has degree ≤ 2, all odd length cycles have an odd number of edges in A−s ,
and all even length cycles have an even number of edges in A−s .

Each component of size k in a subgraph H meeting these conditions
produces two different k-matchings in Gs, and when k = 1, this component
could have been the preimage of two different 1-matchings or one 2-matching.
Disconnected components map to disconnected components in lifts. Let HG,
HG
k , c(H), `(H), and t(H) be defined as in the theorem. Then if we have

H ∈ HG with at least k edges (k ≥ t(H)) but with k ≤ t(H) + `(H) (the
maximum number of edges in a matching whose preimage is H is the number
of edges in components that aren’t single edges plus twice the number of
components which are single edges, which is equal to t(H) + `(H)).

The number of k-matchings whose preimage is H is

2c(H)−`(H) × 2`(H)−k+t(H) ×
(

`(H)

k − t(H)

)
= 2c(H)+t(H)−k

(
`(H)

k − t(H)

)
2c(H)−`(H) determines edges coming from components which are not single
edges. 2`(H)−k+t(H) comes from single edge components in H which only
contribute one edge to a matching whose preimage is H.

(
`(H)
k−t(H)

)
stems

from the k − t(H) single edge components which contribute two edges to a
matching whose preimage is H.

7



5 Relatively Self-Complementary Signings

Definition 5.1. The relative complement of a graph G with respect to a
subgraph H is G\H = {e ∈ E(G) : e /∈ E(H)}. If H ∼= G\H, we say that H
is relatively self-complementary with respect to G.

When we have a graph Gt which comes from the 2-lift of some other
graph G via the signing t, we get a natural set of signings SRSC such that
for s ∈ SRSC , A+

s
∼= A−s , that is say that A+

s is relatively self-complementary
with respect to Gt. Recall that every edge in G becomes two edges in Gt

which we designate as corresponding edges.

Proposition 5.2. Let Gt be the 2-lift of the graph G via the signing t. Con-
sider signings s of Gt such that A+

s contains exactly one edge from each
pair of corresponding edges. Then A+

s
∼= A−s , and the eigenvalues of As are

symmetrically distributed.

Proof. Recall that Gt contains two copies of the vertex set V (G) which we
shall designate as V and V ′. Notice that for signings chosen in the way
described in the proposition, the permutation σ = (v1 v

′
1)(v2 v

′
2)...(vn v

′
n) is

an isomorphism between A+
s and A−s , so these two subgraphs are isomorphic.

Further, notice that σ is order 2, which is to say it is its own inverse. Let
P be the permutation matrix associated with σ. We know P = P−1, so
P−1A+

s P = A−s and P−1A−s P = A+
s . Thus

P−1AsP = P−1(A+
s − A−s )P = P−1A+

s P − P−1A−s P = A−s − A+
s = −As

Since conjugation does not change the spectrum of a matrix, the eigen-
values of As must be symmetrically distributed.

As in the case of the proof by Marcus, Spielman, and Srivastava about the
existence of Ramanujan 2-lifts for bipartite graphs, looking at the expected
characteristic polynomial of a set of signings may tell us about the properties
of some single signing in that set. The expected characteristic polynomial of
all signings was the matching polynomial, but the proof must be modified to
deal with the case of relatively self-complementary signings since the edges
are now signed in pairs instead of individually.

Theorem 5.3. Let Gt be the 2-lift of the graph G based on the signing t. Let
SRSC be the set of relatively self-complementary signings of Gt as described
in Proposition 5.2. Let C be as in the proof of Theorem 4.4, and let C ′ be
the set of elements in C composed of loops, single edges (two cycles), and
cycles consisting of pairs of corresponding edges (that is, the set of edges
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contained in cycles of length ≥ 3 consists entirely of pairs of corresponding
edges). Then,

Es∈SRSC
det(xI − As(Gt)) =

∑
C′
w(C ′)

Proof. The proof is basically the same as the proof of Theorem 4.4. Each
pair of corresponding edges is signed independently from every other pair, so
the only non-vanishing terms in the expectation are cycle covers composed
of loops and edges (just as in Theorem 4.4) as well as cycles composed of
corresponding edges, whose signings are dependent and thus non-vanishing.

6 Future Work

Interestingly, in all but a few cases tested, the expected characteristic polyno-
mial of relatively self-complementary signings stemming from a Ramanujan
2-lift of a graph was real-rooted. The few cases where this did not hold were
when d = 3 (and in that case it was uncommon). It is computationally infea-
sible to calculate expected characteristic polynomials on graphs with more
than around 40 edges (number of calculations is O(2

m
2 ), so only graphs with

d = 3, 4, 5 have been tested. Seeing as one hallmark of Ramanujan graph is
that they satisfy a reformation of the Riemann hypothesis in terms of the
Ihara zeta functions for graphs [7], which is a measure of the distribution of
cycles in a graph, we suspect that the Ihara zeta function is intricately linked
to the expected characteristic polynomial of relatively self-complementary
signings. Future work will involve exploring those connections.
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