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1. Background

• (X,S(X), µ) a measure space.

• T : X → X an invertible transformation.

• T is measure-preserving, i.e. µ(T (A)) = µ(A) for all measur-
able sets A.

Definition 1.1. T is conservative if for any set A of positive mea-
sure there exists non-zero integer n such that µ(A ∩ TnA) > 0.

Figure 1: Conservativity
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Definition 1.3. T is ergodic if the only T -invariant sets are X and
φ, i.e. TA = A implies A ∈ {X,φ}.
Definition 1.4. T has infinite ergodic index if for every k ∈ N,
T × · · · × T︸ ︷︷ ︸

k times
is ergodic on X × · · · ×X︸ ︷︷ ︸

k times
.

Abstract

We construct a class of rank-one infinite measure-preserving transfor-
mations such that for each transformation in the class, all finite carte-
sian products of the transformation with itself are ergodic but the prod-
uct of the transformation with it inverse is not ergodic. We also prove
that for all rank-one transformations, the product of the transformation
with its inverse is conservative.

Significance:
• Brings out the differences in ergodic properties between T×T

and T × T−1 through combinatorial techniques.
• Even the powerful property of infinite ergodic index for T does

not force T × T−1 to be ergodic.
• It is well known that T×T is not always conservative. T×T−1

being conservative for all rank-one T provides interesting
contrast.
• Addresses the question of whether T and T−1 are isomor-

phic. Answer is negative because T × T and T × T−1 do not
always agree on conservativity or ergodicity.

2. Rank-One Transformations

2.1 Construction

• Start with a column containing a single level, the unit interval.
•Cut the column into pieces of equal width.
• Add some spacer levels of the correct width from the real line.
• Stack every subcolumn below the one to the right.
• For any point x in a level, let Tx be the point directly above it.
•Repeat the cutting and stacking process indefinitely. Then al-

most every point has an image under T .

Figure 2: Construction of Rank-One Transformations
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2.2 Descendants

Definition 2.1. Let i ≤ j. Let I be a level in the i-th column. Let
J be the base level of the j-th column. Then D(I, j), the descen-
dants of I in column j, is the set of indices m such that TmJ ⊂ I.

Figure 3: Descendants
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Lemma 2.2. Let I, J be the base levels of the i-th and j-th
columns respectively, where i ≤ j. Then T aJ ⊂ TnI iff
a ∈ n +D(I, j).

This lemma lets us switch from levels to sets of indices, allowing
us to invoke combinatorial properties of sets.

3. Preliminary Work

For the rest of the poster, let i ≥ 0 ∈ Z, let I be the base of column
Ci, and let A = I × I.

Strategy:

•We will prove our results on D, the set of all rectangles whose
sides are levels in T and T−1.

•We have shown that any property that holds for T on D must
also hold on A

– Letting i = 0, we attain the result for X ×X.

• This works because for any set F ⊆ X, we can always find
some B ⊆ D such that µ(F ∩ B) ≥ (1 − ε)µ(B), and use our
knowledge about B to inform us about F .

Figure 4: Rectangle B almost full of F
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Lemma: Let T be a rank-one transformation. Then S := T ×
T−1 is conservative if and only if for every ε > 0 there is j such
that for at least (1 − ε)|D(I, j)|2 of the pairs (a0, a1) ∈ D(I, j)2,
there exists (d0, d1) ∈ D(I, j)2 such that a0 + a1 = d0 + d1, with
a0 6= d0.

Proof outline: The key to this proof is recognizing that every pair
(a0, a1) ∈ D(I, j)2 corresponds exactly to one rectangle, namely
T a0J × (T−1)a1J ∈ D.

• There are exactly |D(I, j)|2 such rectangles. Suppose that for
some rectangle T a0J × (T−1)a1J , we have (d0, d1) ∈ D(I, j)2

such that a0 + a1 = d0 + d1, with a0 6= d0.

• Then, we may let n = a0−d0 6= 0, so that Sn(T d0J×(T−1)d1J) =
T a0J × (T−1)a1J . Now, we have T a1J × (T−1)a2J ⊆ SnA.

• If this condition holds for (1 − ε)|D(I, j)|2 of the pairs (a0, a1)-
that is, for almost all rectangles with sides that are levels in Cj-
then we may show that A, up to measure εµ(A), is covered by⋃m
n=−m S

nA (for n 6= 0).

• From here, we may conclude that S is conservative.

4. Proof of Main Result

Theorem: For any rank-one transformation T , T × T−1 is con-
servative.

Proof: By the above lemma, it suffices to show that for every
ε > 0 there is j such that with probability at least 1 − ε, a pair
(a0, a1) ∈ D(I, j) has a corresponding pair (d0, d1) ∈ D(I, j) such
that a0 6= d0 and a0 + a1 = d0 + d1.
Suppose that a0 6= a1. Let d0 = a1 and d1 = a0. Then d0 6= a0
and d0 + d1 = a0 + a1, as required. The number of pairs such that
a0 = a1 is |D(I, j)|, hence the probability that a pair (a0, a1) has a
corresponding pair (d0, d1) is at least

1− |D(I, j)|
|D(I, j)|2

and this quantity goes to 1 as j →∞, which concludes the proof.

5. Additional Work

Given a rank-one transformation, we can find the set of descen-
dants, but we can also begin with the set of descendants to de-
fine a rank-one transformation. Using this method, we have con-
structed an example of a rank-one transformation T such that T
has infinite ergodic index, but where T × T−1 is not ergodic.
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