Numerical Semigroups and their Corresponding Core Partitions

Benjamin Houston-Edwards
Joint with Hannah Constantin

Yale University

August 7, 2014
Definition
A set S is a **numerical semigroup** if

- $S \subseteq \mathbb{N}$
- $0 \in S$
- S is closed under addition
- $\mathbb{N} \setminus S$ is finite
Definition
A set S is a **numerical semigroup** if

$S \subseteq \mathbb{N}$

$0 \in S$

S is closed under addition

$\mathbb{N} \setminus S$ is finite

Example
$S = \langle 3, 8 \rangle$
Background and Review

Definition
A set S is a **numerical semigroup** if

- $S \subseteq \mathbb{N}$
- $0 \in S$
- S is closed under addition
- $\mathbb{N} \setminus S$ is finite

Example
$S = \langle 3, 8 \rangle = \{0, 3, 6, 8, 9, 11, 12, 14, 15, 16, \ldots \}$
Background and Review

There is an injective map φ from numerical semigroups to integer partitions

Example

$S = \langle 3, 8 \rangle = \{0, 3, 6, 8, 9, 11, 12, 14, \ldots \}$

$\varphi(S) = (7, 5, 3, 2, 2, 1, 1)$
Background and Review

There is an injective map φ from numerical semigroups to integer partitions

Example

$S = \langle 3, 8 \rangle = \{0, 3, 6, 8, 9, 11, 12, 14, \ldots \}$
Background and Review

There is an injective map φ from numerical semigroups to integer partitions

Example

$S = \langle 3, 8 \rangle = \{0, 3, 6, 8, 9, 11, 12, 14, \ldots \}$
Background and Review

There is an injective map \(\varphi \) from numerical semigroups to integer partitions.

Example

\[S = \langle 3, 8 \rangle = \{0, 3, 6, 8, 9, 11, 12, 14, \ldots \} \]
Background and Review

There is an injective map φ from numerical semigroups to integer partitions

Example

$S = \langle 3, 8 \rangle = \{0, 3, 6, 8, 9, 11, 12, 14, \ldots \}$
Background and Review

There is an injective map φ from numerical semigroups to integer partitions

Example

$S = \langle 3, 8 \rangle = \{0, 3, 6, 8, 9, 11, 12, 14, \ldots \}$
Background and Review

There is an injective map φ from numerical semigroups to integer partitions

Example

$S = \langle 3, 8 \rangle = \{0, 3, 6, 8, 9, 11, 12, 14, \ldots \}$
Background and Review

There is an injective map φ from numerical semigroups to integer partitions

Example

$S = \langle 3, 8 \rangle = \{0, 3, 6, 8, 9, 11, 12, 14, \ldots \}$

$\varphi(S) = (7, 5, 3, 2, 2, 1, 1)$
Background and Review

We can also assign a set of hook lengths to each partition:
Background and Review

We can also assign a set of **hook lengths** to each partition:

Example

\[\varphi(\langle 3, 8 \rangle) \]
Background and Review

We can also assign a set of **hook lengths** to each partition:

Example

\[\varphi(\langle 3, 8 \rangle) \]
Background and Review

We can also assign a set of **hook lengths** to each partition:

Example

\[\varphi(\langle 3, 8 \rangle) \]
Background and Review

We can also assign a set of **hook lengths** to each partition:

Example

\[\varphi(\langle 3, 8 \rangle) \]
Background and Review

We can also assign a set of **hook lengths** to each partition:

Example

\[\varphi(\langle 3, 8 \rangle) \]
Background and Review

We can also assign a set of **hook lengths** to each partition:

Example

\[\varphi(\langle 3, 8 \rangle) \]

<table>
<thead>
<tr>
<th></th>
<th>13</th>
<th>10</th>
<th>7</th>
<th>5</th>
<th>4</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Background

Definition
A partition λ is an a–core partition if a does not divide any of the hook lengths of λ. An (a,b)–core partition is both an a–core and a b–core.

Example
$\lambda = (7, 5, 3, 2, 2, 1, 1)$ is a $(3, 8)$–core partition.
Background

Definition
A partition λ is an a–core partition if a does not divide any of the hook lengths of λ. An (a,b)–core partition is both an a–core and a b–core.

Example
$\lambda = (7,5,3,2,2,1,1)$ is a $(3,8)$–core
Background

Theorem (Anderson)
For coprime a and b, the total number of (a, b)–core partitions is

\[
\frac{1}{a+b} \binom{a+b}{a}.
\]
Theorem (Anderson)
For coprime a and b, the total number of (a, b)–core partitions is

$$\frac{1}{a + b} \binom{a + b}{a}.$$

We are interested in counting the subset of (a, b)–cores that come from numerical semigroups via the map φ.
Proposition
Suppose $\lambda = \varphi(S)$ for some semigroup S. Then λ is an (a, b)–core if and only if $a, b \in S$.

Example $\lambda = (7, 5, 3, 2, 2, 1, 1)$ is a $(3, 8)$–core and $\lambda = \varphi(S)$ where $S = \langle 3, 8 \rangle = \{0, 3, 6, 8, 9, 11, 12, 14, 15, 16, \ldots\}$.
Background

Proposition
Suppose $\lambda = \varphi(S)$ for some semigroup S. Then λ is an (a, b)–core if and only if $a, b \in S$.

Example
$\lambda = (7, 5, 3, 2, 2, 1, 1)$ is a $(3, 8)$–core and $\lambda = \varphi(S)$ where $S = \langle 3, 8 \rangle = \{0, 3, 6, 8, 9, 11, 12, 14, 15, 16, \ldots \}$
Background

Proposition
Suppose $\lambda = \varphi(S)$ for some semigroup S. Then λ is an (a, b)–core if and only if $a, b \in S$.
Background

Proposition
Suppose $\lambda = \varphi(S)$ for some semigroup S. Then λ is an (a, b)--core if and only if $a, b \in S$.

Definition
Given a numerical semigroup S, the set of oversemigroups of S is

$$\{T \supseteq S : T \text{ is a numerical semigroup}\}.$$

The cardinality of this set is denoted $O(S)$.
Background

Proposition
Suppose $\lambda = \varphi(S)$ for some semigroup S. Then λ is an (a, b)–core if and only if $a, b \in S$.

Definition
Given a numerical semigroup S, the set of oversemigroups of S is

$$\{T \supseteq S : T \text{ is a numerical semigroup}\}.$$

The cardinality of this set is denoted $O(S)$.

The number of (a, b)–core partitions from numerical semigroups is exactly $O(\langle a, b \rangle)$.
Definition
If S is a numerical semigroup, then the Apéry tuple of S with respect to some $n \in S$ is the tuple $(k_1, k_2, \ldots, k_{n-1})$ such that $nk_i + i$ is the smallest element of S in its residue class (mod n) for each i.

This tuple is denoted $\text{Ap}'(S, n)$.
Apéry Tuples

Definition
If S is a numerical semigroup, then the Apéry tuple of S with respect to some $n \in S$ is the tuple $(k_1, k_2, \ldots, k_{n-1})$ such that $nk_i + i$ is the smallest element of S in its residue class (mod n) for each i.

This tuple is denoted $\text{Ap}'(S, n)$.

Example
If $S = \langle 3, 8 \rangle = \{0, 3, 6, 8, 9, 11, 12, 14, \ldots \}$, then 16 and 8 are the smallest elements of S in their residue classes mod 3, so $\text{Ap}'(S, 3) = (5, 2)$.
Apéry Tuples

Suppose S is a numerical semigroup with

$$Ap'(S, n) = (k_1, \ldots, k_{n-1}).$$

A tuple $(\ell_1, \ell_2, \ldots, \ell_{n-1})$ is an Apéry tuple of some numerical semigroup $T \supseteq S$ if and only if the following inequalities are satisfied:

- $\ell_i \geq 0, \forall 1 \leq i \leq n-1$
- $\ell_i + \ell_j \geq \ell_i + j, i + j < n$
- $\ell_i + \ell_j + 1 \geq \ell_n - i - j, i + j > n$
- $\ell_i \leq k_i$ for all i

Remark: These inequalities define an $n-1$ dimensional polytope in which the integer lattice points correspond exactly with the oversemigroups of S.
Apéry Tuples

Suppose S is a numerical semigroup with

$$\text{Ap}'(S, n) = (k_1, \ldots, k_{n-1}).$$

A tuple $(\ell_1, \ell_2, \ldots, \ell_{n-1})$ is an Apéry tuple of some numerical semigroup $T \supseteq S$ if and only if the following inequalities are satisfied:

$$\ell_i \geq 0, \quad \forall 1 \leq i \leq n-1$$

$$\ell_i + \ell_j \geq \ell_{i+j}, \quad i+j < n$$

$$\ell_i + \ell_j + 1 \geq \ell_{n-i-j}, \quad i+j > n$$

$$\ell_i \leq k_i \quad \text{for all } i$$

Remark: These inequalities define an $n-1$ dimensional polytope in which the integer lattice points correspond exactly with the oversemigroups of S.
Apéry Tuples

Suppose S is a numerical semigroup with

$$\text{Ap}'(S, n) = (k_1, \ldots, k_{n-1}).$$

A tuple $(\ell_1, \ell_2, \ldots, \ell_{n-1})$ is an Apéry tuple of some numerical semigroup $T \supseteq S$ if and only if the following inequalities are satisfied:

- $\ell_i \geq 0, \quad \forall 1 \leq i \leq n - 1$
- $\ell_i + \ell_j \geq \ell_{i+j}, \quad i + j < n$
- $\ell_i + \ell_j + 1 \geq \ell_{n-i-j}, \quad i + j > n$
- $\ell_i \leq k_i \quad \text{for all } i$

Remark

These inequalities define an $n - 1$ dimensional polytope in which the integer lattice points correspond exactly with the overseemsigroups of S.
Example

$S = \langle 3, 8 \rangle$ and $\text{Ap}'(S, 3) = (5, 2)$. The relevant polytope is defined by $x \leq 5$, $y \leq 2$, $2x \geq y$, and $2y + 1 \geq x$:

\[\text{There are 10 integer lattice points in this polytope, so } O(\langle 3, 8 \rangle) = 10. \]
Example

$S = \langle 3, 8 \rangle$ and $\text{Ap}'(S, 3) = (5, 2)$. The relevant polytope is defined by $x \leq 5$, $y \leq 2$, $2x \geq y$, and $2y + 1 \geq x$:
Apéry Tuples and Polytopes

Example

$S = \langle 3, 8 \rangle$ and $\text{Ap'}(S, 3) = (5, 2)$. The relevant polytope is defined by $x \leq 5$, $y \leq 2$, $2x \geq y$, and $2y + 1 \geq x$:

There are 10 integer lattice points in this polytope, so $O(\langle 3, 8 \rangle) = 10$.
The case of $a = 3$

Theorem (Constantin – H.E.)

If $S = \langle 3, 6 \rangle$ then $O(S) = (3k + \ell)(k + 1)$.

Example

$O(\langle 3, 8 \rangle) = O(\langle 3, 6 \cdot 1 + 2 \rangle) = (3 + 2)(1 + 1) = 10$
The case of $a = 3$

Theorem (Constantin – H.E.)

If $S = \langle 3, 6k + \ell \rangle$ then $O(S) = (3k + \ell)(k + 1)$.
The case of $a = 3$

Theorem (Constantin – H.E.)

If $S = \langle 3, 6k + \ell \rangle$ then $O(S) = (3k + \ell)(k + 1)$.

Example

$O(\langle 3, 8 \rangle) = O(\langle 3, 6 \cdot 1 + 2 \rangle) = (3 + 2)(1 + 1) = 10$
The case of $a = 4$

Theorem (Constantin – H.E.)
If $S = \langle 4, 12k + \ell \rangle$ then $O(S) \sim 24k^3$.
The case of \(a = 4 \)

Theorem (Constantin – H.E.)

If \(S = \langle 4, 12k + \ell \rangle \) then \(O(S) \sim 24k^3 \).

In fact, we can find the explicit formula for each \(\ell \):

<table>
<thead>
<tr>
<th>(\ell)</th>
<th>(O(S))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(24k^3 + 30k^2 + 11k + 1)</td>
</tr>
<tr>
<td>3</td>
<td>(24k^3 + 42k^2 + 23k + 4)</td>
</tr>
<tr>
<td>5</td>
<td>(24k^3 + 54k^2 + 39k + 9)</td>
</tr>
<tr>
<td>7</td>
<td>(24k^3 + 66k^2 + 59k + 17)</td>
</tr>
<tr>
<td>9</td>
<td>(24k^3 + 78k^2 + 83k + 29)</td>
</tr>
<tr>
<td>11</td>
<td>(24k^3 + 90k^2 + 111k + 45)</td>
</tr>
</tbody>
</table>
Asymptotic Behavior

Let \(A(a, b) = \binom{a+b}{a} / (a + b) \), the total number of \((a, b)\)-core partitions by Anderson’s theorem.
Asymptotic Behavior

Let $A(a, b) = \binom{a+b}{a}/(a+b)$, the total number of (a, b)–core partitions by Anderson’s theorem.

Comparing $O(\langle a, b \rangle)$ with $A(a, b)$ in the limit:

$$
\begin{array}{c|c}
 a & \lim_{b \to \infty} O(\langle a, b \rangle) / A(a, b) \\
\end{array}
$$
Asymptotic Behavior

Let $A(a, b) = \binom{a+b}{a}/(a + b)$, the total number of (a, b)–core partitions by Anderson’s theorem.

Comparing $O(\langle a, b \rangle)$ with $A(a, b)$ in the limit:

$$\begin{array}{c|c}
a & \lim_{b \to \infty} O(\langle a, b \rangle) / A(a, b) \\
2 & 1 \\
\end{array}$$
Asymptotic Behavior

Let \(A(a, b) = \binom{a+b}{a} / (a + b) \), the total number of \((a, b)\)−core partitions by Anderson’s theorem.

Comparing \(O(\langle a, b \rangle) \) with \(A(a, b) \) in the limit:

\[
\begin{array}{|c|c|}
\hline
a & \lim_{b \to \infty} O(\langle a, b \rangle) / A(a, b) \\
\hline
2 & 1 \\
3 & 1/2 \\
\hline
\end{array}
\]
Asymptotic Behavior

Let $A(a, b) = \binom{a+b}{a} / (a + b)$, the total number of (a, b)–core partitions by Anderson’s theorem.

Comparing $O(\langle a, b \rangle)$ with $A(a, b)$ in the limit:

<table>
<thead>
<tr>
<th>a</th>
<th>$\lim_{b \to \infty} O(\langle a, b \rangle) / A(a, b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1/2</td>
</tr>
<tr>
<td>4</td>
<td>1/3</td>
</tr>
</tbody>
</table>
Future work

\[
\begin{array}{c|c}
 a & \lim_{b \to \infty} O(\langle a, b \rangle) / A(a, b) \\
 2 & 1 \\
 3 & 1/2 \\
 4 & 1/3 \\
\end{array}
\]
In the future we would like to look at
\[\lim_{b \to \infty} \frac{O(\langle a, b \rangle)}{A(a, b)} \]
for general values of \(a \).

<table>
<thead>
<tr>
<th>(a)</th>
<th>(\lim_{b \to \infty} \frac{O(\langle a, b \rangle)}{A(a, b)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1/2</td>
</tr>
<tr>
<td>4</td>
<td>1/3</td>
</tr>
</tbody>
</table>
Future work

<table>
<thead>
<tr>
<th>a</th>
<th>$\lim_{b \to \infty} O(\langle a, b \rangle) / A(a, b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1/2</td>
</tr>
<tr>
<td>4</td>
<td>1/3</td>
</tr>
</tbody>
</table>

In the future we would like to look at

$$\lim_{b \to \infty} \frac{O(\langle a, b \rangle)}{A(a, b)}$$

for general values of a.

We suspect that as $a \to \infty$, this fraction will decrease to 0, meaning that almost no (a, b)-cores come from semigroups in the limit.
Acknowledgments

We would like to thank...

Nathan Kaplan for guiding our research

Flor Orosz Hunziker and Dan Corey for all their help as mentors

Kyle Luh for helping us understand polytopes

The rest of the SUMRY staff and students for creating such a great program
References

