Splines mod m

Nealy Bowden

Smith College

July 24, 2014
1. Spline Basics

2. Special Properties (mod m)

3. Characterizations and the Role of Primes

4. Further Research and New Ideas
Spline Basics
Here is a graph with edges labeled with elements of $\mathbb{Z}/27\mathbb{Z}$.
Here is a graph with edges labeled with elements of $\mathbb{Z}/27\mathbb{Z}$.

Can you label the vertices with ring elements x_1 and x_2 so that their difference is a multiple of 3?
Here is a graph with edges labeled with elements of $\mathbb{Z}/27\mathbb{Z}$

Can you label the vertices with ring elements x_1 and x_2 so that their difference is a multiple of 3?

Of course you can!
Here’s one set of vertex labels you might have found:

\[
\begin{pmatrix} 3 \\ 0 \end{pmatrix}
\]

the set of vertex labels \(\begin{pmatrix} 9 \\ 0 \end{pmatrix} \) is a spline on the graph.
Here are some other splines on the same graph:
Minimal generating sets are very helpful when talking about splines mod m:

Here is an edge labeled graph.

$$B = \left\{ \begin{pmatrix} 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$$

Here is a minimal generating set for all splines on the edge labeled graph.
Definition (Spline mod m)

Let G be an edge labeled graph such that the set of edge labels of G is a subset of $\mathbb{Z}/m\mathbb{Z}$. A **spline mod m** is a set of vertex labels in $\mathbb{Z}/m\mathbb{Z}$ that satisfy the following condition:

- if two vertices labeled x_1 and x_2 are joined by an edge labeled ℓ_1 then $|x_1 - x_2| \in \langle \ell_1 \rangle$
- We can look for splines on any type of graph.
- We can find splines on graphs labeled with other rings.
- Let’s look at a few examples of some other cool splines.
more splines

an integer spline on a 3-cycle

a polynomial spline on one edge

a spline on K_4 in $\mathbb{Z}/30\mathbb{Z}$
Special Properties (mod m)
Special Properties of Splines mod m

- Finite sets to label with
- Don’t label with 0 or units
- Variability of the modulus
- Generating set size
\[
\begin{pmatrix}
 x_3 \\
 x_2 \\
 x_1
\end{pmatrix} : x_j \in \mathbb{Z}
\]
\[(x_3) \in \mathbb{Z}, (x_1) \in \mathbb{Z}, (x_2) \in \mathbb{Z}\]
$$\begin{pmatrix} x_3 \\ x_2 \\ x_1 \end{pmatrix} : x_i \in \mathbb{Z}/6\mathbb{Z}$$

$$\left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix} \right\}$$
$x_1 \rightarrow 2 \rightarrow x_2 \rightarrow 3 \rightarrow x_3$

\[
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix} : x_i \in \mathbb{Z}/6\mathbb{Z}
\]

\[
\left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix} \right\}
\]

$3 \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix} \equiv \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}$
\[
\begin{pmatrix}
 x_2 \\
 x_1 \\
 x_3
\end{pmatrix} : x_i \in \mathbb{Z}/6\mathbb{Z}
\]

\[
\left\{ \begin{pmatrix}
 1 \\
 1 \\
 1
\end{pmatrix}, \begin{pmatrix}
 3 \\
 2 \\
 0
\end{pmatrix}, \begin{pmatrix}
 3 \\
 0 \\
 0
\end{pmatrix} \right\}
\]

\[
3 \begin{pmatrix}
 3 \\
 2 \\
 0
\end{pmatrix} \equiv \begin{pmatrix}
 3 \\
 0 \\
 0
\end{pmatrix}
\]

\[
\left\{ \begin{pmatrix}
 1 \\
 1 \\
 1
\end{pmatrix}, \begin{pmatrix}
 3 \\
 2 \\
 0
\end{pmatrix} \right\}
\]
Our minimal generating sets can be very small.

Theorem (Tymoczko, Hagen)

Let G be an edge labeled graph on n vertices. A minimal generating set for integer splines on G must contain exactly n elements.

Theorem (Tymoczko, Bowden)

Let G be an edge labeled graph on n vertices. A minimal generating set for splines mod m on G can have anywhere between 1 and n elements.*
Generating sets are important and they sometimes behave in surprising ways.

Linear independence can be tricky!

The value of m matters a lot.
Role of Primes
Let's say we want to find a minimal generating set to describe all splines on this graph mod 25...

\[
\begin{pmatrix}
 x_5 \\
 x_4 \\
 x_3 \\
 x_2 \\
 x_1
\end{pmatrix} : x_i \in \mathbb{Z}/25\mathbb{Z}
\]
Theorem

Let p be a prime number. If G is a graph on n vertices in $\mathbb{Z}/p^2\mathbb{Z}$, then a minimal generating set for all splines on G is:

$$
\mathbb{B} = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \\ \vdots \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ \cdot \\ \cdot \\ \cdot \\ 0 \\ \cdot \\ \cdot \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ \cdot \\ \cdot \\ \cdot \\ 0 \\ \cdot \\ \cdot \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ \cdot \\ \cdot \\ \cdot \\ 0 \\ \cdot \\ \cdot \\ 0 \end{pmatrix}, \begin{pmatrix} p \\ \cdot \\ \cdot \\ \cdot \\ 0 \\ \cdot \\ \cdot \\ 0 \end{pmatrix}, \ldots, \begin{pmatrix} p \\ \cdot \\ \cdot \\ \cdot \\ 0 \\ \cdot \\ \cdot \\ 0 \end{pmatrix} \right\}
$$
Bowden

Splines mod m
How about all splines on this graph in \(\mathbb{Z}/32\mathbb{Z} \)?

\[
\begin{pmatrix}
 x_4 \\
 x_3 \\
 x_2 \\
 x_1
\end{pmatrix} : x_i \in \mathbb{Z}/32\mathbb{Z}
\]
$\mathbb{Z}/p^n\mathbb{Z}$ theorem

Theorem

Let p be a prime number. If C_n is a cycle on n vertices in $\mathbb{Z}/p^k\mathbb{Z}$, then \mathbb{B} is a minimal generating set for all splines on G (up to rotation).

\[
\mathbb{B} = \left\{ \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} \ell_1 \\ \ell_1 \\ \vdots \\ \ell_1 \\ 0 \end{pmatrix}, \ldots, \begin{pmatrix} \ell_i \\ \ell_i \\ 0 \end{pmatrix}, \ldots, \begin{pmatrix} \ell_{n-2} \\ \ell_{n-2} \\ 0 \end{pmatrix}, \begin{pmatrix} \ell_{n-1} \\ \ell_{n-1} \end{pmatrix} \right\}
\]
Bowden

Splines mod m
The Importance of Prime Characterizations

- We are working out a structure theorem that uses the prime factorization of m to understand splines mod m in terms of splines mod p^k.
- This gives an algorithm to compute minimal generating sets.
- In this way $\mathbb{Z}/p^k\mathbb{Z}$ lets us understand more complex modules of splines.
Future Research
Future Research

- Investigate the relationship between graphs and subgraphs.
- Continue to explore variations in minimal generating set size.
- Continue to investigate other moduli.
- Explore, in greater detail, the relationship between splines mod m and splines over other rings.
- Describe all splines over $\mathbb{Z}/p^k\mathbb{Z}$ for arbitrary G.
Thank you to everyone in the math department at Smith for their continued support and guidance.

Thank you to everyone involved with Math 301 for the amazing opportunity to do and share research together.

Special thanks to the other members of our wonderful splines research group: Sarah Hagen, Yue Cao, Melanie King, Stephanie Reinders, Chloe Xie, and Dr. Elizabeth Drellich.

Special thanks to Julianna Tymoczko for introducing many students to the wonderful world of splines.